2D Conductive Iron-Quinoid Magnets Ordering up to Tc = 105 K via Heterogenous Redox Chemistry.

نویسندگان

  • Jordan A DeGayner
  • Ie-Rang Jeon
  • Lei Sun
  • Mircea Dincă
  • T David Harris
چکیده

We report the magnetism and conductivity for a redox pair of iron-quinoid metal-organic frameworks (MOFs). The oxidized compound, (Me2NH2)2[Fe2L3]·2H2O·6DMF (LH2 = 2,5-dichloro-3,6-dihydroxo-1,4-benzoquinone) was previously shown to magnetically order below 80 K in its solvated form, with the ordering temperature decreasing to 26 K upon desolvation. Here, we demonstrate this compound to exhibit electrical conductivity values up to σ = 1.4(7) × 10-2 S/cm (Ea = 0.26(1) cm-1) and 1.0(3) × 10-3 S/cm (Ea = 0.19(1) cm-1) in its solvated and desolvated forms, respectively. Upon soaking in a DMF solution of Cp2Co, the compound undergoes a single-crystal-to-single-crystal one-electron reduction to give (Cp2Co)1.43(Me2NH2)1.57[Fe2L3]·4.9DMF. Structural and spectroscopic analysis confirms this reduction to be ligand-based, and as such the trianionic framework is formulated as [FeIII2(L3-•)3]3-. Magnetic measurements for this reduced compound reveal the presence of dominant intralayer metal-organic radical coupling to give a magnetically ordered phase below Tc = 105 K, one of the highest reported ordering temperatures for a MOF. This high ordering temperature is significantly increased relative to the oxidized compound, and stems from the overall increase in coupling strength afforded by an additional organic radical. In line with the high critical temperature, the new MOF exhibits magnetic hysteresis up to 100 K, as revealed by variable-field measurements. Finally, this compound is electrically conductive, with values up to σ = 5.1(3) × 10-4 S/cm with Ea = 0.34(1) eV. Taken together, these results demonstrate the unique ability of metal-quinoid MOFs to simultaneously exhibit both high magnetic ordering temperatures and high electrical conductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new 2D block ordering system for wavelet-based multi-resolution up-scaling

A complete and accurate analysis of the complex spatial structure of heterogeneous hydrocarbon reservoirs requires detailed geological models, i.e. fine resolution models. Due to the high computational cost of simulating such models, single resolution up-scaling techniques are commonly used to reduce the volume of the simulated models at the expense of losing the precision. Several multi-scale ...

متن کامل

Structural, Magnetic and Catalytic Properties of Non-Stoichiometric Lanthanum Ferrite Nano-Perovskites in Carbon Monoxide Oxidation

Perovskite-type oxides of LaFe(1+x)O(3+δ) (x = 0.0, 0.2, 0.5 and 0.7) were synthesized by citrate sol–gel methodto ensure the formation of nanosized perovskites. The physicochemical properties of these LaFe(1+x)O(3+δ)materials were characterized by thermal gravimetric/differential analyses, Fourier transform infraredspectroscopy, X-ray powder diffraction, scanning electron and...

متن کامل

A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from Tc = 26 to 80 K.

The incorporation of tetraoxolene radical bridging ligands into a microporous magnetic solid is demonstrated. Metalation of the redox-active bridging ligand 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (LH2) with Fe(II) affords the solid (Me2NH2)2[Fe2L3]·2H2O·6DMF. Analysis of X-ray diffraction, Raman spectra, and Mössbauer spectra confirm the presence of Fe(III) centers with mixed-valence ligan...

متن کامل

Room temperature organic magnets derived from sp3 functionalized graphene

Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic ma...

متن کامل

Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 139 11  شماره 

صفحات  -

تاریخ انتشار 2017